Chemogenetic silencing of NaV1.8 positive sensory neurons reverses chronic neuropathic and bone cancer pain in FLEx PSAM4-GlyR mice

Abstract

Drive from peripheral neurons is essential in almost all pain states, but pharmacological silencing of these neurons to effect analgesia has proved problematic. Reversible gene therapy using long-lived chemogenetic approaches is an appealing option. We used the genetically-activated chloride channel PSAM4-GlyR to examine pain pathways in mice. Using recombinant AAV9-based delivery to sensory neurons, we found a reversal of acute pain behavior and diminished neuronal activity using in vitro and in vivo GCaMP imaging upon activation of PSAM4-GlyR with varenicline. A significant reduction in inflammatory heat hyperalgesia and oxaliplatin-induced cold allodynia was also observed. Importantly, there was no impairment of motor coordination, but innocuous von Frey sensation was inhibited. We generated a transgenic mouse that expresses a CAG-driven FLExed PSAM4-GlyR downstream of the Rosa26 locus that requires Cre recombinase to enable the expression of PSAM4-GlyR and tdTomato. We used NaV1.8 Cre to examine the role of predominantly nociceptive NaV1.8+ neurons in cancer-induced bone pain (CIBP) and neuropathic pain caused by chronic constriction injury (CCI). Varenicline activation of PSAM4-GlyR in NaV1.8-positive neurons reversed CCI-driven mechanical, thermal, and cold sensitivity. Additionally, varenicline treatment of mice with CIBP expressing PSAM4-GlyR in NaV1.8+ sensory neurons reversed cancer pain as assessed by weight-bearing. Moreover, when these mice were subjected to acute pain assays, an elevation in withdrawal thresholds to noxious mechanical and thermal stimuli was detected, but innocuous mechanical sensations remained unaffected. These studies confirm the utility of PSAM4-GlyR chemogenetic silencing in chronic pain states for mechanistic analysis and potential future therapeutic use.Significance StatementChronic pain is a massive problem. Peripheral nerve block is effective in many chronic pain conditions, demonstrating the importance of peripheral drive in chronic pain. We used chemogenetic tools based on the modified ligand-gated chloride channel PSAM4-GlyR to silence dorsal root ganglion neurons in vitro and in vivo This approach reduces pain-like behavior in acute and chronic pain models, including resistant pain conditions like neuropathic pain or cancer-induced bone pain. We generated a mouse line that expresses PSAM4-GlyR in a Cre-dependent manner, providing a useful research tool to address not only the role of nociceptive sensory neurons in pain states but also the function of genetically defined sets of neurons throughout the nervous system in normal and pathological conditions

    Similar works