Altered Hippocampal-Prefrontal Neural Dynamics in Mouse Models of Down Syndrome

Abstract

Altered neural dynamics in medial prefrontal cortex (mPFC) and hippocampus may contribute to cognitive impairments in the complex chromosomal disorder, Down Syndrome (DS). Here, we demonstrate non-overlapping behavioural differences associated with distinct abnormalities in hippocampal and mPFC electrophysiology during a canonical spatial memory task in three partially trisomic mouse models of DS (Dp1Tyb, Dp10Yey, Dp17Yey) that together cover all regions of homology with human chromosome 21 (Hsa21). Dp1Tyb mice showed slower decision-making (unrelated to the gene dose of DYRK1A, which has been implicated in DS cognitive dysfunction) and altered theta dynamics (reduced frequency, increased hippocampal-mPFC coherence, increased modulation of hippocampal high gamma); Dp10Yey mice showed impaired alternation performance and reduced theta modulation of hippocampal low gamma; while Dp17Yey mice were no different from wildtype mice. These results link specific hippocampal and mPFC circuit dysfunctions to cognitive deficits in DS models and, importantly, map them to discrete regions of Hsa21

    Similar works