The authors have recently presented a harmonized framework that unifies state-of-the-art methodologies for relaxing fault segmentation assumptions, including time-dependent earthquake occurrence and accounting for fault interaction. This framework has so far only been applied to shallow crustal faults, which are the typical focus of recent advancements in fault-based probabilistic seismic hazard analysis (PSHA). The methodological study presented in this paper is a first attempt to extend this framework to a subduction zone. The case study presented herein concerns the 900-km long Nankai subduction zone in South Japan. This work highlights several challenges with implementing the considered framework to subduction zones, emphasizing possible future research efforts that could improve the results presented in this study. In particular, it is concluded that (1) down-dip discretization of subduction zones should be used along with the along-strike discretization currently used for shallow crustal faults; (2) further research is needed to develop a standard physically-motivated approach to generate viable ruptures for subduction zones; (3) plate convergence rate and interplate coupling coefficients (i.e., heterogeneity of the coupling ratio defined as the slip rate divided by the plate convergence rate) should be explored and explicitly accounted for as part of the epistemic uncertainty in the hazard assessment; (4) 2D functions describing the shape of the average single-event slip should be developed