Holographic Fourier domain diffuse correlation spectroscopy

Abstract

Diffuse correlation spectroscopy (DCS) is a non-invasive optical modality which can be used to measure cerebral blood flow (CBF) in real-time. It has important potential applications in clinical monitoring, as well as in neuroscience and the development of a non-invasive brain-computer interface. However, a trade-off exists between the signal-to-noise ratio (SNR) and imaging depth, and thus CBF sensitivity, of this technique. Additionally, as DCS is a diffuse optical technique, it is limited by a lack of inherent depth discrimination within the illuminated region of each source-detector pair, and the CBF signal is therefore also prone to contamination by the extracerebral tissues which the light traverses. Placing a particular emphasis on scalability, affordability, and robustness to ambient light, in this work I demonstrate a novel approach which fuses the fields of digital holography and DCS: holographic Fourier domain DCS (FD-DCS). The mathematical formalism of FD-DCS is derived and validated, followed by the construction and validation (for both in vitro and in vivo experiments) of a holographic FD-DCS instrument. By undertaking a systematic SNR performance assessment and developing a novel multispeckle denoising algorithm, I demonstrate the highest SNR gain reported in the DCS literature to date, achieved using scalable and low-cost camera-based detection. With a view to generating a forward model for holographic FD-DCS, in this thesis I propose a novel framework to simulate statistically accurate time-integrated dynamic speckle patterns in biomedical optics. The solution that I propose to this previously unsolved problem is based on the Karhunen-Loève expansion of the electric field, and I validate this technique against novel expressions for speckle contrast for different forms of homogeneous field. I also show that this method can readily be extended to cases with spatially varying sample properties, and that it can also be used to model optical and acoustic parameters

    Similar works