Pre‐ and postoperative 68Ga‐DOTATOC positron emission tomography for hormone‐secreting pituitary neuroendocrine tumors

Abstract

Objectives: Somatostatin receptors (SSTRs) are potential targets for detecting pituitary neuroendocrine tumours (PitNETs) that can be visualized effectively with 68Ga-labelled PET tracers. With this study, we have evaluated the diagnostic properties of such a tracer, 68Ga-DOTATOC, in patients with hormone-producing PitNETs before and after surgery. Design/Methods: This prospective case-control study presents preoperative positron emission tomography (PET) and histopathological data in 18 patients with somatotroph (n = 8), corticotroph (n = 7) and thyrotroph (n = 3) PitNETs. Patients were scanned pre- and postoperatively with 68Ga-DOTATOC PET. For the postoperative part of the study, patients with gonadotroph tumours (n = 7) were also included. Fifteen pituitary healthy controls underwent the same protocol once. The maximum standard uptake value (SUVmax) was analysed in manually outlined regions around the tumour in patients and around the pituitary gland in controls. specimens were collected during surgery in subjects for assessment of adenohypophyseal tumour cell type and the SSTR expression. Results: Thyrotroph tumours showed higher uptake (median SUVmax 41.1; IQR 37.4-60.0) and corticotroph tumours lower uptake (SUVmax 6.8; 2.6-9.3) than normal pituitary gland (SUVmax 13.8; 12.1-15.5). The uptake in somatotroph tumours (SUVmax 15.9; 11.6-19.7) was similar to the uptake in the pituitary gland. There was a strong correlation between SUVmax and SSTR2 expression (r = .75 (P 13.8. Conclusions: 68Ga-DOTATOC PET can be used to detect thyrotroph tumours in the pre- and postoperative imaging assessment. Corticotroph tumours had a significantly lower uptake compared to the pituitary gland but without a distinct increased tumour uptake the clinical postoperative value is limited

    Similar works