Revealing the microstructural evolution of electron beam powder bed fusion and hot isostatic pressing Ti-6Al-4V in-situ shelling samples using X-ray computed tomography
Electron beam powder bed fusion/hot isostatic pressing (E-PBF/HIP), also known as in-situ shelling, is an emerging technology that produces components by only forming their shells whilst retaining sintered powder at the core, and then using HIP to consolidate the entire structure. E-PBF/HIP can boost additive manufacturing productivity, however, the fundamental understanding of the process-microstructure-property correlations remains unclear. Here, we systematically investigate the microstructural evolution of E-PBF/HIP Ti-6Al-4V parts as a function of hatch melting parameters. All HIPped samples achieve full densification, however, their microstructures are significantly different from one another. Using X-ray computed tomography (XCT) and optical microscopy, our results show that the HIPped Ti-6Al-4V microstructure can be controlled by varying the porosity, P (%), pore surface areas and morphology in the as-built parts with a single set of HIP parameters. The HIPped microstructures still exhibit the as-built columnar grains when the as-built porosity, P 5 % with a highly dense pore network. This work suggests two main drivers for the grain morphology transitions during HIP: (1) a dramatic increase in pore volume increases the localised applied pressure up to 4 times at the core region of the sample and (2) minimise lack-of-fusion pores with high surface energies, promoting dynamic recrystallisation. This study provides a fundamental insight into the E-PBF/HIP technology, showing the feasibility to tailor microstructural properties of E-PBF built parts whilst boosting additive manufacturing productivity