An accurate method to model the optical behaviour of liquid crystal (LC) devices, particularly suited to devices where diffractive effects are present is described here. An accurate electromagnetic modelling programme that takes into account the full non-uniformity and anisotropy of the LC has been developed. This is combined with an existing in-house LC finite element modelling programme based on the Landau – De Gennes theory, that uses the order tensor representation of the LC orientation and allows an accurate descriptions of structures containing LC defects and small features. The electromagnetic model is based on the total field/scattered field (TF-SF) approach to electromagnetic scattering problems and is implemented using finite differences in the frequency domain (FDFD) in a form that can accommodate perfectly matched layers (PMLs) and periodic boundary conditions. The resultant matrix problem is solved efficiently using an especially adapted form of a sweeping preconditioner and the generalised minimum residual method (GMRes). This method has been implemented in 2D and is demonstrated here with the design and analysis of a reconfigurable blazed phase grating that utilises an LC defect to produce an abrupt fly-back, with the capability of short periods and high diffraction efficiency