Data-driven feature identification and sparse representation of turbulent flows

Abstract

Identifying coherent structures in fluid flows is of great importance for reduced order modelling and flow control. However, extracting such structures from experimental or numerical data obtained from a turbulent flow can be challenging. A number of modal decomposition algorithms have been proposed in recent years which decompose time-resolved snapshots of data into spatial modes, each associated with a single frequency and growth-rate. Most prominently among them is dynamic mode decomposition (DMD). However, DMD-like algorithms create an arbitrary number of modes. It is common practice to then choose a smaller subset of these modes, for the purpose of model reduction and analysis, based on some measure of significance. In this work, we present a method of post-processing DMD modes for extracting a small number of dynamically relevant modes. We achieve this through an iterative approach based on the graph-theoretic notion of maximal cliques to identify clusters of modes and representing each cluster with a single representative mode

    Similar works