Orthosiphon stamineus leaves (Java tea) extract is traditionally used for the treatment of urinary tract infections. According to recent in vitro data, animal infection studies, and transcriptomic investigations, polymethoxylated flavones from Java tea exert antiadhesive activity against uropathogenic Escherichia coli (UPEC). This antiadhesive activity has been shown to reduce bladder and kidney lesion in a mice infection model. As no data on the antivirulent activity of Java tea intake on humans are available, a biomedical study was performed on 20 healthy volunteers who self-administered Orthosiphon infusion (4 × 3 g per day, orally) for 7 days. The herbal material used for the study conformed to the specification of the European Pharmacopoeia, and ultra high-performance liquid chromatography (UHPLC) of the infusion showed rosmarinic acid, caffeic acid, and cichoric acid to be the main compounds aside from polymethoxylated flavones. Rosmarinic acid was quantified in the tea preparations with 243 ± 22 µg/mL, indicating sufficient reproducibility of the preparation of the infusion. Urine samples were obtained during the biomedical study on day 1 (control urine, prior to Java tea intake), 3, 6 and 8. Antiadhesive activity of the urine samples was quantified by flowcytometric assay using pre-treated UPEC NU14 and human T24 bladder cells. Pooled urine samples indicated significant inhibition of bacterial adhesion on day 3, 6 and 8. The urine samples had no influence on the invasion of UPEC into host cells. Bacterial proliferation was slightly reduced after 24 h incubation with the urine samples. Gene expression analysis (qPCR) revealed strong induction of fitness and motility gene fliC and downregulation of hemin uptake system chuT. These data correlate with previously reported datasets from in vitro transcriptomic analysis. Increased bacterial motility was monitored using a motility assay in soft agar with UPEC UTI89. The intake of Java tea had no effect on the concentration of Tamm-Horsfall Protein in the urine samples. The present study explains the antiadhesive and anti-infective effect of the plant extract by triggering UPEC from a sessile lifestyle into a motile bacterial form, with reduced adhesive capacity