Nanoplasmonic Accelerators Towards Tens of TeraVolts per Meter Gradients Using Nanomaterials

Abstract

Ultra-high gradients which are critical for future advances in high-energy physics, have so far relied on plasma and dielectric accelerating structures. While bulk crystals were predicted to offer unparalleled TV/m gradients that are at least two orders of magnitude higher than gaseous plasmas, crystal-based acceleration has not been realized in practice. We have developed the concept of nanoplasmonic crunch-in surface modes which utilizes the tunability of collective oscillations in nanomaterials to open up unprecedented tens of TV/m gradients. Particle beams interacting with nanomaterials that have vacuum-like core regions, experience minimal disruptive effects such as filamentation and collisions, while the beam-driven crunch-in modes sustain tens of TV/m gradients. Moreover, as the effective apertures for transverse and longitudinal crunch-in wakes are different, the limitation of traditional scaling of structure wakefields to smaller dimensions is significantly relaxed. The SLAC FACET-II experiment of the nano2WA collaboration will utilize ultra-short, high-current electron beams to excite nonlinear plasmonic modes and demonstrate this possibility

    Similar works

    Full text

    thumbnail-image

    Available Versions