research

Smart Analogue Sampler for the Optical Module of a Cherenkov Neutrino Detector

Abstract

A transient waveform sampler/recorder IC has been developed and realized in AMS C35B4 technology. This chip has been designed to fit the needs of a proposal for a front-end architecture for the readout of the anode signal of the photomultipliers in an underwater neutrino telescope. The design is based around a 3 channels x 32 cells switched capacitor array unit sampling its voltage inputs at 200MHz external clock rate and transferring the stored analogue voltage samples to its single analogue output at 1/10th of the sampling rate. This unit is replicated inside the ASIC providing 4 independent analogue sampling queues for signal transients up to 32 x 5 ns and a fifth unit storing transients up to 128 x 5 ns. A micro-pipelined unit, based on Muller C-gates, controls the 5 independent samplers. This paper briefly summarizes the complete front-end architecture and discusses in more detail the internal structure of the ASIC and its first functional tests

    Similar works