Dual Output Regulating Rectifier for an Implantable Neural Interface

Abstract

This paper presents the design of a power management circuit consisting of a dual output regulating rectifier configuration featuring pulse width modulation (PWM) and pulse frequency modulation (PFM) to control the regulated output of 1.8 V, and 3.3 V from a single input ac voltage. The PFM control feedback consists of feedback-driven regulation to adjust the driving frequency of the power transistors through the buffers in the active rectifier. The PWM mode control provides a feedback loop to accurately adjust the conduction duration. The design also includes an adiabatic charge pump (CP) to power stimulators in an implantable neural interface. The adiabatic CP consists of latch up and power saving topologies to enhance its energy efficiency. Simulation results show that the dual regulating rectifier has 94.3% voltage conversion efficiency with an ac input magnitude of 3.5 Vp. The power transfer efficiency of the regulated 3.3 V output voltage is 82.3%. The dual output regulating rectifier topology is suitable for multi-functional implantable devices. The adiabatic CP has an overall efficiency of 92.9% with an overall on-chip capacitance of 60 pF. The circuit was designed in a 180-nm CMOS technology

    Similar works