A simulation‐based framework for earthquake risk‐informed and people‐centred decision making on future urban planning

Abstract

Numerous approaches to earthquake risk modelling and quantification have already been proposed in the literature and/or are well established in practice. However, most of these procedures are designed to focus on risk in the context of current static exposure and vulnerability, and are therefore limited in their ability to support decisions related to the future, as yet partially unbuilt, urban landscape. We propose an end-to-end risk modelling framework that explicitly addresses this specific challenge. The framework is designed to consider the earthquake (ground-shaking) risks of tomorrow’s urban environment, using a simulation-based approach to rigorously capture the uncertainties inherent in future projections of exposure as well as physical and social vulnerability. The framework also advances the state-of-practice in future disaster risk modelling by additionally: (1) providing a harmonised methodology for integrating physical and social impacts of disasters that facilitates flexible characterisation of risk metrics beyond physical damage/asset losses; and (2) incorporating a participatory, people-centred approach to risk-informed decision making. The framework is showcased using the physical and social environment of an expanding synthetic city. This example application demonstrates how the framework may be used to make policy decisions related to future urban areas, based on multiple, uncertain risk drivers

    Similar works