On the role of molecular mechanisms and unequal cleavage during neurogenesis in the C. elegans C lineage

Abstract

Required for neurogenesis is a family of evolutionarily conserved bHLH transcription factors known as proneural genes. However, regulation of their initial expression remains a poorly understood aspect of neurodevelopment in any model, particularly Caenorhabditis elegans. A key mechanism by which cells acquire different fates is asymmetric division and in neuronal lineages these often generate unequally sized daughters. Whether this unequal size directly affects cell fate regulation is often unknown. Indeed, the question of how control of cell size intersects with fate decisions is poorly understood in biology more generally. Taking advantage of the single-cell resolution provided by the invariant cell lineage of C. elegans, I interrogate these two fundamental biological questions in the C lineage. Expression of the proneural gene hlh-14/Ascl1 in a single branch of the lineage is required for neurogenesis of the DVC and PVR neurons and is immediately preceded by unequal cleavages. Addressing both molecular and cellular regulators I perform a 4D-lineage based genetic screen for upstream regulators of hlh-14/Ascl1 and address the effect of unequal cleavage and daughter cell size. I find that a regulator of other neuronal lineage cleavages, PIG-1/MELK, is also required in the C lineage, yet equalisation does not affect the initiation of hlh-14/Ascl1 expression. Conversely, I demonstrate that unequal cleavage and acquisition of neuronal fate in separate successive divisions are controlled by the same key regulators. The first by an upstream regulator of hlh-14, the Mediator complex kinase module let-19/Mdt-13 and the second by hlh-14 itself. Taken together the results described in this thesis suggest that rather than acting to correctly segregate initial proneural gene expression, unequal cleavages are instead co-regulated by the same factors regulating neuronal fate acquisition. This co-regulation at successive divisions thus coordinates two separable aspects of fate; acquisition of neuronal identity and correct post-mitotic embryonic cell size

    Similar works