The emphasis of the investigation reported in this thesis is on the use of digital elevation data of two resolutions originating from two different sources. The high resolution DEM was captured from aerial photographs (first source) at a scale of 1:30,000 and the low resolution DEM was captured from SPOT images (second source). It is well known that the resolution of DEM data depends a great deal on the scale of the images used. The technique for capturing DEMs is static measurement of the spot heights in a regular grid. The grid spacing of the high resolution DEM was 30 m, and of the low resolution DEM was 100 m. The aims of this thesis are as follows: 1. To assess the feasibility of using SPOT stereodata as a source of height information and merged with data from aerial photography. This is carried out by comparison of the elevation data derived from SPOT with the digital elevation data derived from aerial photography. From the comparison of these two sources of height information, some results are derived which show the possible heighting accuracy levels which can realistically be achieved. A systematic error in the estimated average of the elevation differences was found and many tests have been carried out to find the reasons for the presence of this systematic error. 2. To develop methods to manipulate the captured data. 2.1. Gross error (blunder) detection. Blunders made during the data capturing procedure affect the accuracy of the final product. Therefore it is necessary to trap and to remove them. A pointwise local self-checking blunder detection algorithm was developed in order to check the grid elevation data, particularly those which are derived from the second source. 2.2. Data coordinates transformation. The data must be transformed into a common projection in order to be directly comparable. The projection and coordinate systems employed are studied in this project, and the errors caused by the transformations are estimated. 2.3. Data merging. Data of different reliability have to be merged into a single set of data. In this project data from two different sources are merged in order to create a final product of known and uniform accuracy. The effect of the lower resolution source on the high resolution source was studied, in dense and in sparse form. 2.4. Data structure. To structure the data by changing the format in order to be in an acceptable form for DEM creation and display, through the commercially available Laser-Scan package DTMCREATE. 3. DEM production and contouring. To produce DEMs from the initial data and that derived from the two merged sources, and to find the accuracy of the interpolation procedure by comparing the derived interpolated data with the high resolution DEM which has been derived from aerial photography. Finally to interpolate contours directly from the "raw" SPOT data and to compare them with those derived from the aerial photography in order to find out the feasibility and capability of using SPOT data in contouring for topographic maps