research

Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates

Abstract

Exact computer arithmetic has a variety of uses including, but not limited to, the robust implementation of geometric algorithms. This report has three purposes. The first is to offer fast software-level algorithms for exact addition and multiplication of arbitrary precision floating-point values. The second is to propose a technique for adaptive-precision arithmetic that can often speed these algorithms when one wishes to perform multiprecision calculations that do not always require exact arithmetic, but must satisfy some error bound. The third is to provide a practical demonstration of these techniques, in the form of implementations of several common geometric calculations whose required degree of accuracy depends on their inputs. These robust geometric predicates are adaptive; their running time depends on the degree of uncertainty of the result, and is usually small. These algorithms work on computers whose floating-point arithmetic uses radix two and exact rounding, including machines complying with the IEEE 754 standard. The inputs to the predicates may be arbitrary single or double precision floating-point numbers. C code is publicly available for the 2D and 3D orientation and incircle tests, an

    Similar works