research

Multi-task feature selection

Abstract

We address joint feature selection across a group of classification or regression tasks. In many multi-task learning scenarios, different but related tasks share a large proportion of relevant features. We propose a novel type of joint regularization for the parameters of support vector machines in order to couple feature selection across tasks. Intuitively, we extend the ℓ1 regularization for single-task estimation to the multi-task setting. By penalizing the sum of ℓ2-norms of the blocks of coefficients associated with each feature across different tasks, we encourage multiple predictors to have similar parameter sparsity patterns. This approach yields convex, nondifferentiable optimization problems that can be solved efficiently using a simple and scalable extragradient algorithm. We show empirically that our approach outperforms independent ℓ1-based feature selection on several datasets. 1

    Similar works