Simulation-driven engineering for the management of harmful algal and cyanobacterial blooms

Abstract

Harmful Algal and Cyanobacterial Blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world's water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces DEVS-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with Model Based Systems Engineering (MBSE) and Cyber-Physical Systems (CPS) infrastructure for dynamic environments

    Similar works

    Full text

    thumbnail-image

    Available Versions