Controlling mass and energy diffusion with metamaterials

Abstract

Diffusion driven by temperature or concentration gradients is a fundamental mechanism of energy and mass transport, which inherently differs from wave propagation in both physical foundations and application prospects. Compared with conventional schemes, metamaterials provide an unprecedented potential for governing diffusion processes, based on emerging theories like the transformation and the scattering cancellation theory, which enormously expanded the original concepts and suggest innovative metamaterial-based devices. We hereby use the term ``diffusionics'' to generalize these remarkable achievements in various energy (e.g., heat) and mass (e.g., particles and plasmas) diffusion systems. For clarity, we categorize the numerous studies appeared during the last decade by diffusion field (i.e., heat, particles, and plasmas) and discuss them from three different perspectives: the theoretical perspective, to detail how the transformation principle is applied to each diffusion field; the application perspective, to introduce various intriguing metamaterial-based devices, such as cloaks and radiative coolers; and the physics perspective, to connect with concepts of recent concern, such as non-Hermitian topology, nonreciprocal transport, and spatiotemporal modulation. We also discuss the possibility of controlling diffusion processes beyond metamaterials. Finally, we point out several future directions for diffusion metamaterial research, including the integration with artificial intelligence and topology concepts.Comment: This review article has been accepted for publication in Rev. Mod. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions