research

Solving constraints within a graph based dependency model by digitising a new process of incrementally casting concrete structures

Abstract

The mechanisation of incrementally casting concrete structures can reduce the economic and environmental cost of the formwork which produces them. Low-tech versions of these forms have been designed to produce structures with cross-sectional continuity, but the design and implementation of complex adaptable formworks remains untenable for smaller projects. Addressing these feasibility issues by digitally modelling these systems is problematic because constraint solvers are the obvious method of modelling the adaptable formwork, but cannot acknowledge the hierarchical relationships created by assembling multiple instances of the system. This thesis hypothesises that these opposing relationships may not be completely disparate and that simple dependency relationships can be used to solve constraints if the real procedure of constructing the system is replicated digitally. The behaviour of the digital model was correlated with the behaviour of physical prototypes of the system which were refined based on digital explorations of its possibilities. The generated output is assessed physically on the basis of its efficiency and ease of assembly and digitally on the basis that permutations can be simply described and potentially built in reality. One of the columns generated by the thesis will be cast by the redesigned system in Lyon at the first F2F (file to factory) continuum workshop

    Similar works