Application of Piezoelectrics to Solar Cells to Optimize Energy Harvesting Abilities via Exposure to Varying Weather Conditions

Abstract

There exists a great demand to utilize renewable energy sources instead of burning fossil fuels. Currently, power conversion efficiency of domestic solar cells is 23.6%, and further improvements are necessary. Furthermore, real-world domestic solar panels show an efficiency of just about 15 percent. Combining piezoelectric strips (harnessing vibrational energy) and solar cells can potentially enhance power generation and efficiency. Solar cells and piezoelectric strips were exposed to simulated sun, rain, and wind, and tilting angles (0o-75o), to determine optimal power output. Solar cells were tested within an enclosed testing chamber with a 100W Halogen bulb as a light source simulating the sun (30.48cm from the cells). Power generation remained constant during the trials with and without piezoelectric strips, producing 10.0 mW and 10.2 mW, respectively. To simulate wind, a fan was utilized at 8.9m/s, 8.0m/s, and 7.2m/s. When assessing wind, 8.9m/s (0o) produced the highest power (0.36mW) in comparison to 7.2m/s (0.3mW). To simulate rain, a peristaltic-pump (10mL/min and 25mL/min) dispersed water droplets onto piezoelectric strips for testing. High water droplet (diameter=1.0 cm) speed produced the highest power in comparison to low speeds, 0.058mW and 0.053mW respectively. Mixed condition testing produced 10.3 mW, an 8.3% increase in comparison to solar alone, showcasing that piezoelectric strips can effectively be implemented in conjunction with solar cells. In order to maximize power output with this combined setup, areas with higher annual rainfall and wind speeds could benefit the most

    Similar works

    Full text

    thumbnail-image

    Available Versions