Continuous touchscreen biometrics: authentication and privacy concerns

Abstract

In the age of instant communication, smartphones have become an integral part of our daily lives, with a significant portion of the population using them for a variety of tasks such as messaging, banking, and even recording sensitive health information. However, the increasing reliance on smartphones has also made them a prime target for cybercriminals, who can use various tactics to gain access to our sensitive data. In light of this, it is crucial that individuals and organisations prioritise the security of their smartphones to protect against the abundance of threats around us. While there are dozens of methods to verify the identity of users before granting them access to a device, many of them lack effectiveness in terms of usability and potential vulnerabilities. In this thesis, we aim to advance the field of touchscreen biometrics which promises to alleviate some of the recurring issues. This area of research deals with the use of touch interactions, such as gestures and finger movements, as a means of identifying or authenticating individuals. First, we provide a detailed explanation of the common procedure for evaluating touch-based authentication systems and examine the potential pitfalls and concerns that can arise during this process. The impact of the pitfalls is evaluated and quantified on a newly collected large-scale dataset. We also discuss the prevalence of these issues in the related literature and provide recommendations for best practices when developing continuous touch-based authentication systems. Then we provide a comprehensive overview of the techniques that are commonly used for modelling touch-based authentication, including the various features, classifiers, and aggregation methods that are employed in this field. We compare the approaches under controlled, fair conditions in order to determine the top-performing techniques. Based on our findings, we introduce methods that outperform the current state-of-the-art. Finally, as a conclusion to our advancements in the development of touchscreen authentication technology, we explore any negative effects our work may cause to an ordinary user of mobile websites and applications. In particular, we look into any threats that can affect the privacy of the user, such as tracking them and revealing their personal information based on their behaviour on smartphones

    Similar works