RF Amplification and Filtering Techniques for Cellular Receivers

Abstract

The usage of various wireless standards, such as Bluetooth, Wi-Fi, GPS, and 4G/5G cellular, has been continually increasing. In order to utilize the frequency bands efficiently and to support new communication standards with lower power consumption, lower occupied volume and at reduced costs, multimode transceivers, software defined radios (SDRs), cognitive radios, etc., have been actively investigated. Broadband behavior of a wireless receiver is typically defined by its front-end low-noise amplifier (LNA), whose design must consider trade-offs between input matching, noise figure (NF), gain, bandwidth, linearity, and voltage headroom in a given process technology. Moreover, monolithic RF wireless receivers have been trending toward high intermediatefrequency (IF) or superhetrodyne radios thanks to recent breakthroughs in silicon integration of band-pass channel-select filters. The main motivation is to avoid the common issues in the currently predominant zero/low-IF receivers, such as poor 2nd-order nonlinearity, sensitivity to 1/f (i.e. flicker) noise and time-variant dc offsets, especially in the fine CMOS technology. To avoid interferers and blockers at the susceptible image frequencies that the high-IF entails, band-pass filters (BPF) with high quality (Q) factor components for sharp transfer-function transition characteristics are now required. In addition, integrated low-pass filters (LPF) with strong rejection of out-of-band frequency components are essential building blocks in a variety of applications, such as telecommunications, video signal processing, anti-aliasing filtering, etc. Attention is drawn toward structures featuring low noise, small area, high in-/out-of-band linearity performance, and low-power consumption. This thesis comprises three main parts. In the first part (Chapters 2 and 3), we focus on the design and implementation of several innovative wideband low-noise (transconductance) amplifiers [LN(T)A] for wireless cellular applications. In the first design, we introduce new approaches to reduce the noise figure of the noise-cancellation LNAs without sacrificing the power consumption budget, which leads to NF of 2 dB without adding extra power consumption. The proposed LNAs also have the capability to be used in current-mode receivers, especially in discrete-time receivers, as in the form of low noise transconductance amplifier (LNTA). In the second design, two different two-fold noise cancellation approaches are proposed, which not only improve the noise performance of the design, but also achieve high linearity (IIP3=+4.25 dBm). The proposed LN(T)As are implemented in TSMC 28-nm LP CMOS technology to prove that they are suitable for applications such as sub-6 GHz 5G receivers. The second objective of this dissertation research is to invent a novel method of band-pass filtering, which leads to achieving very sharp and selective band-pass filtering with high linearity and low input referred (IRN) noise (Chapter 4). This technique improves the noise and linearity performance without adding extra clock phases. Hence, the duty cycle of the clock phases stays constant, despite the sophisticated improvements. Moreover, due to its sharp filtering, it can filter out high blockers of near channels and can increase the receiver’s blocker tolerance. With the same total capacitor size and clock duty cycle as in a 1st-order complex charge-sharing band-pass filter (CS BPF), the proposed design achieves 20 dB better out-of-band filtering compared to the prior-art 1st-order CS BPF and 10 dB better out-of-band filtering compared to the conventional 2nd-order C-CS BPF. Finally, the stop-band rejection of the discrete-time infinite-impulse response (IIR) lowpass filter is improved by applying a novel technique to enhance the anti-aliasing filtering (Chapter 5). The aim is to introduce a 4th-order charge rotating (CR) discrete-time (DT) LPF, which achieves the record of stop-band rejection of 120 dB by using a novel pseudolinear interpolation technique while keeping the sampling frequency and the capacitor values constant

    Similar works