A Low-Energy Security Solution for IoT-Based Smart Farms

Abstract

This work proposes a novel configuration of the Transport Layer Security protocol (TLS), suitable for low energy Internet of Things (IoT), applications. The motivation behind the redesign of TLS is energy consumption minimisation and sustainable farming, as exemplified by an application domain of aquaponic smart farms. The work therefore considers decentralisation of a formerly centralised security model, with a focus on reducing energy consumption for battery powered devices. The research presents a four-part investigation into the security solution, composed of a risk assessment, energy analysis of authentication and data exchange functions, and finally the design and verification of a novel consensus authorisation mechanism. The first investigation considered traditional risk-driven threat assessment, but to include energy reduction, working towards device longevity within a content-oriented framework. Since the aquaponics environments include limited but specific data exchanges, a content-oriented approach produced valuable insights into security and privacy requirements that would later be tested by implementing a variety of mechanisms available on the ESP32. The second and third investigations featured the energy analysis of authentication and data exchange functions respectively, where the results of the risk assessment were implemented to compare the re-configurations of TLS mechanisms and domain content. Results concluded that selective confidentiality and persistent secure sessions between paired devices enabled considerable improvements for energy consumptions, and were a good reflection of the possibilities suggested by the risk assessment. The fourth and final investigation proposed a granular authorisation design to increase the safety of access control that would otherwise be binary in TLS. The motivation was for damage mitigation from inside attacks or network faults. The approach involved an automated, hierarchy-based, decentralised network topology to reduce data duplication whilst still providing robustness beyond the vulnerability of central governance. Formal verification using model-checking indicated a safe design model, using four automated back-ends. The research concludes that lower energy IoT solutions for the smart farm application domain are possible

    Similar works