Deep probabilistic methods for improved radar sensor modelling and pose estimation

Abstract

Radar’s ability to sense under adverse conditions and at far-range makes it a valuable alternative to vision and lidar for mobile robotic applications. However, its complex, scene-dependent sensing process and significant noise artefacts makes working with radar challenging. Moving past classical rule-based approaches, which have dominated the literature to date, this thesis investigates deep and data-driven solutions across a range of tasks in robotics. Firstly, a deep approach is developed for mapping raw sensor measurements to a grid-map of occupancy probabilities, outperforming classical filtering approaches by a significant margin. A distribution over the occupancy state is captured, additionally allowing uncertainty in predictions to be identified and managed. The approach is trained entirely using partial labels generated automatically from lidar, without requiring manual labelling. Next, a deep model is proposed for generating stochastic radar measurements from simulated elevation maps. The model is trained by learning the forward and backward processes side-by-side, using a combination of adversarial and cyclical consistency constraints in combination with a partial alignment loss, using labels generated in lidar. By faithfully replicating the radar sensing process, new models can be trained for down-stream tasks, using labels that are readily available in simulation. In this case, segmentation models trained on simulated radar measurements, when deployed in the real world, are shown to approach the performance of a model trained entirely on real-world measurements. Finally, the potential of deep approaches applied to the radar odometry task are explored. A learnt feature space is combined with a classical correlative scan matching procedure and optimised for pose prediction, allowing the proposed method to outperform the previous state-of-the-art by a significant margin. Through a probabilistic consideration the uncertainty in the pose is also successfully characterised. Building upon this success, properties of the Fourier Transform are then utilised to separate the search for translation and angle. It is shown that this decoupled search results in a significant boost to run-time performance, allowing the approach to run in real-time on CPUs and embedded devices, whilst remaining competitive with other radar odometry methods proposed in the literature

    Similar works