The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases.

Abstract

Previous studies have shown that the region of human urokinase-type plasminogen activator (uPA) responsible for receptor binding resides in the amino-terminal fragment (ATF, residues 1-135) (Stoppelli, M.P., Corti, A., Soffientini, A., Cassani, G., Blasi, F., and Assoian, R.K. (1985) Proc. Natl. Acad. Sci. U.S. A. 82, 4939-4943). The area within ATF responsible for specific receptor binding has now been identified by the ability of different synthetic peptides corresponding to different regions of the amino terminus of uPA to inhibit receptor binding of 125I-labeled ATF. A peptide corresponding to human [Ala19]uPA-(12-32) resulted in 50% inhibition of ATF binding at 100 nM. Peptides uPA-(18-32) and [Ala13]uPA-(9-20) inhibit at 100 and 2000 microM, respectively. The human peptide uPA-(1-14) and the mouse peptide [Ala20]uPA-(13-33) have no effect on ATF receptor binding. This region of uPA is referred to as the growth factor module since it shares partial amino acid sequence homology (residues 14-33) to epidermal growth factor (EGF). Furthermore, this region of EGF is responsible for binding of EGF to its receptor (Komoriya, A. Hortsch, M., Meyers, C., Smith, M., Kanety, H., and Schlessinger, J. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1351-1355). However, EGF does not inhibit ATF receptor binding. Comparison of the sequences responsible for receptor binding of uPA and EGF indicate that the region of highest homology is between residues 13-19 and 14-20 of human uPA and EGF, respectively. In addition, there is a conservation of the spacings of four cysteines in this module whereas there is no homology between residues 20-30 and 21-33 of uPA and EGF. Thus, residues 20-30 of uPA apparently confer receptor binding specificity, and residues 13-19 provide the proper conformation to the adjacent binding region

    Similar works