Vascularized Tissue Blocks Using a Suspension 3D Printed Spheroid Blood Vessel

Abstract

In order for engineered tissue grafts and eventually organs to successfully integrate in a clinical setting, a functional vascular network is imperative. Without vasculature, the tissue constructs cannot receive nutrients essential for their survival, but also lack the stimuli that determine the tissue’s biophysical properties i.e. cell fate determination, cell to cell junctions, and cell orientation. In order for the vascular network to functionally connect to the patient, a hierarchical organization, resembling the vascular tree, is important. From previous studies it is known that fluid flow is a crucial component in controlling the formation of the vascular tree, and that the organization of the vascular network can be further controlled using gradients of angiogenic growth factors such as VEGF. By utilizing spheroid bioprinting within a microgel suspension, an artificial vessel structure was assembled. The deposited spheroids maintained viability and fused over time into perfusable vessels.The subsequent formation of small-diameter vascular structures and capillaries was regulated by an on-demand flow through the bioprinted vessel, resulting in controllable fluid flow shear stresses. Furthermore, VEGF was spatially patterned in the tissue block by locally doping the suspension with growth factor releasing microparticles. By varying both these stimuli, the location of vascular sprout formation and subsequent growth of the new vascular structures could be influenced. This spheroid 3D bioprinting platform offers a dynamic, customizable and accurate method to trigger and control the process of angiogenesis in vitro. By stimulating an artificial blood vessel with controlled fluid flow and growth factor gradients, a vascular complex vascular network can be produced and modulated. The combination of this approach with a gradual replacement of the microgel suspension with cells, can pave the way for the production of vascularized tissue blocks

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 30/03/2019