Cobalt

Abstract

W większości związków kobalt (Co) występuje na II lub III stopniu wartościowości. Związki kobaltu(III) reagują z różnymi kwasami, tworząc sole, podczas gdy kobalt(II) jest mniej reaktywny. Pierwiastek ten występuje w organizmach żywych i jest zaliczany do mikroelementów oraz jest składnikiem witaminy B12. Kobalt jest stosowany jako składnik stopów stali szybkotnących (stopy zawierające 45 ÷ 50% kobaltu i 25 ÷ 30% chromu), stopów magnetycznie twardych, twardych stopów narzędziowych itp. Związki kobaltu są stosowane do produkcji farb (błękit Thenarda, smalta) i lakierów w przemysłach szklarskim i ceramicznym. W warunkach przemysłowych występuje głównie narażenie na kobalt w postaci dymów i pyłów. Szacuje się, że obecnie w Polsce narażonych na kobalt i jego związki jest około 5000 osób. W 2000 r. w jednym z zakładów województwa śląskiego stwierdzono narażenie pracowników na ponadnormatywne stężenie kobaltu metalicznego (dymy, pyły). Narażonych było 20 osób zatrudnionych przy produkcji gotowych wyrobów metalowych (z wyjątkiem maszyn i innych urządzeń). Natomiast wg danych Głównej Inspekcji Sanitarnej w 2007 r. nie było przekroczeń wartości NDS (0,05 mg/m3) kobaltu metalicznego (dymy i pyły). Nie ma danych w dostępnym piśmiennictwie dotyczących ostrych zatruć kobaltem u ludzi. Zatrucia przewlekłe niezawodowe spowodowane spożyciem dużej ilości piwa z dodatkiem siarczanu kobaltu spowodowały uszkodzenie mięśnia sercowego, zwiększenie liczby czerwonych krwinek (czerwienica) i zaburzenie metabolizmu tarczycy. U ludzi narażonych na kobalt drogą inhalacyjną i dermalną obserwowano alergię i słabe działanie drażniące. Układem krytycznym działania kobaltu jest układ oddechowy, w którym najczęściej obserwowano zmiany o typie astmatycznym i podłożu alergicznym, a także zmiany czynnościowe polegające na upośledzeniu wydolności oddechowej. Na podstawie wyników badań toksyczności ostrej kobalt i jego związki nieorganiczne można zaklasyfikować do czynników toksycznych lub szkodliwych. W badaniach przewlekłych główne skutki działania toksycznego kobaltu dotyczyły zmian zapalnych i martwiczych nabłonka dróg oddechowych, a w większych dawkach zmian zwłóknieniowych dolnych partii układu oddechowego. W badaniach wpływu na rozrodczość kobalt wykazywał działanie fetotoksyczne. Badania NTP wykazały działanie rakotwórcze siarczanu kobaltu u myszy i szczurów. IARC zaklasyfikował kobalt i jego związki nieorganiczne do grupy 2B (związki o udowodnionym działaniu rakotwórczym na zwierzęta i nieudowodnionym działaniu rakotwórczym na ludzi). Do ustalenia wartości NDS dla kobaltu i jego związków nieorganicznych za skutek krytyczny przyjęto zmiany astmatyczne w układzie oddechowym o podłożu alergicznym, które manifestowały się kaszlem, świszczącym oddechem oraz spłyceniem oddechu. Zespół tych objawów określa się jako „hard metal asthma”. Większość opisywanych przypadków astmy było związanych z narażeniem na kobalt w przemyśle metali ciężkich. U kilku pacjentów z objawami “hard metal asthma” w badaniach immunolo-gicznych wykazano obecność specyficznych przeciwciał i/lub pozytywny wynik testu transformacji limfocytów. Badania te dotyczyły osób narażonych zarówno na sole kobaltu, jak i metal oraz proszek metalu. Narażenie na pyły kobaltu u pracowników przemysłu metali ciężkich (produkcja metali) oraz w rafine-riach (produkcja kobaltu) wywoływało zmiany czynnościowe w drogach oddechowych polegające na upośledzeniu wydolności oddechowej. Działanie kobaltu na inne narządy i układy, a w szczególności na skórę, układ krążenia, krew oraz tarczycę występowało po znacznie większych dawkach lub stężeniach związku. Z tego względu skutki te pominięto przy ustalaniu wartości dopuszczalnego stężenia kobaltu w powietrzu na stanowiskach pracy. Za postawę do wyznaczenia wartości NDS kobaltu i jego związków nieorganicznych przyjęto wyniki badania przeprowadzonego w Finlandii wśród pracowników zatrudnionych przy produkcji kobaltu. Na podstawie wyników badań stwierdzono, że ryzyko astmy wzrastało 5-krotnie u pracowników narażonych na siarczan kobaltu o stężeniu 0,1 mg/m3 (w przeliczeniu na kobalt). U pracowni-ków narażonych na aerozol siarczanu kobaltu o stężeniach < 0,1 mg/m3 przez 6 ÷ 8 lat nie wykazano wzrostu ryzyka przewlekłego zapalenia oskrzeli.Stężenie kobaltu wynoszące 0,1 mg/m3 przyjęto za wartość LOAEL i przy zastosowaniu odpowiednich współczynników niepewności zaproponowano wartość NDS równą 0,02 mg/m3 zarówno dla kobaltu, jak i jego związków nieorganicznych z uwzględnieniem narażenia na pyły zawierające kobalt. Wartość normatywu higienicznego na tym samym poziomie przyjęto w ACGIH i w Holandii. Mniejszą wartość normatywną kobaltu wynoszącą 0,01 mg/m3 przyjęto w Danii. W Niemczech, ze względu na udowodnione działanie rakotwórcze kobaltu u zwierząt doświadczalnych, nie ustalono dla kobaltu wartości MAK (grupa 3A). Nie było także wystarczających danych do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) kobaltu. Zaproponowano natomiast przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla stężeń kobaltu w moczu 15 g/l moczu (g/g kreatyniny) i we krwi 1 g/l. Przyjęto także, że normatyw należy oznaczyć literami: ,,I” – sub-stancja o działaniu drażniącym; „A” – substancja o działaniu uczulającym, „Ft” – substancja działa toksycznie na płód oraz „Rakotw.” – kategorię rakotwórczości związków należy ustalić na podstawie wykazu substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem, np. dichlorek kobaltu – Rakotw. Kat. 2; R49; siarczan(VI) kobaltu – Rakotw. Kat. 2; R49.In most compounds, cobalt (Co) occurs at level II or level III of its value. Co compounds (III) react with different acids, producing salts, whereas the reactivity of Co II is less pronounced. This element, present in living organisms, is a microelement and is a component of vitamin B12. It is an essential component of alloys used in high-speed-cutting steel tools (alloys containing 45–50% of Co and 25–30 % of chromium), hard magnets, hard tools and others. Co compounds are used in the production of paints (Thénard blue, smalt) and lacquers in the glass-making and ceramic industries. In industrial conditions, fumes and dusts are the major sources of exposure. It is estimated that in Poland about 5000 persons are exposed to cobalt and its compounds. In 2000, an excessive exposure of workers to metallic Co (fumes and dusts) was found in a plant in the Silesian voivodeship. Twen-ty persons involved in the manufacture of ready-made metallic products (except for machines and other devices) were exposed; however, according to 2007 data provided by the Chief Sanitary In-spectorate, Co (fumes and dusts) maximum admissible concentrations (MAC = 0.05 mg/m3) were not exceeded. In the literature there are no data on Co acute intoxications in humans. Non-occupational chronic intoxications due to consumption of large quantities of cobalt sulfate fortified beer induced myocar-dial lesion, enhanced red blood cell count (polycythemia) and disturbed thyroid metabolism. In persons exposed to cobalt via inhalation and absorption through the skin, allergies and irritations are observed. The respiratory tract is its major target organ, hence asthma- and allergy-like lesions, as well as functional changes, involving the impairment of lung functions are most frequent. On the basis of the results of acute toxicity studies, cobalt and its inorganic compounds can be classi-fied as toxic or hazardous agents. Studies of chronic effects showed that inflammatory and necrotic lesions of respiratory epithelium are the main consequences of cobalt toxicity, and fibrosis of the lower parts of the respiratory tract can also be induced in the case of higher doses. The National Toxicology Program studies have evidenced carcinogenic effect of cobalt sulfate and the Internation-al Agency for Research on Cancer (IARC) has categorized cobalt and its compounds as group 2B (sufficient evidence of carcinogenicity in experimental animals and inadequate evidence in humans). To determine MAC values for cobalt and its inorganic compounds, allergic asthma lesions mani-fested by wheezing cough and shortness of breath were adopted as a critical effect. The syndrome comprising these manifestations is termed hard metal asthma. Most reported asthma cases were linked with exposure to cobalt in the heavy metal industry. In several cobalt-exposed patients with symptoms of hard metal asthma, immunological tests revealed the presence of specific antibodies and/or positive lymphocyte transformation test. Those persons had been exposed to cobalt salts, metallic cobalt and metallic powder. Exposure to cobalt dust in workers employed in the hard metal industry (metal production) and refineries (cobalt production) induced changes in respiratory functions, involving the impairment of 94 respiration efficiency. Co effects on other organs and systems, in general, and on the skin, circulatory system and thyroid gland, in particular, have been observed after higher doses or higher compound concentrations. That is why these effects have been disregarded in setting MAC values in the workstation ambient air. The results of a Finnish study carried out in workers engaged in cobalt production have been adopted as a basis for setting MAC values for cobalt and its inorganic compounds. These find-ings evidenced a five-fold increase in asthma incidence in workers exposed to Co sulfate at a concentration of 0.1 mg/m3 (converted into cobalt). In workers exposed to cobalt sulfate aerosol at a concentration of < 0.1 mg/m3 for 6 – 8 years no enhanced risk of chronic bronchitis has been found. Cobalt concentration of 0.1 mg/m3 has been adopted as the value of the lowest observed adverse effect level (LOAEL) and applying relevant uncertainty coefficients MAC value = 0.02 has been pro-posed for cobalt and its inorganic compounds, taking account of exposure to cobalt-containing dusts. The hygiene standard value at the same level was adopted by the American Conference of Govern-mental Industrial Hygiene (ACGIH) and in The Netherlands. A lower value (0.01 mg/m3) was adopted in Denmark. In Germany, the MAC value for cobalt has not been set on account of its suffi-ciently evidenced carcinogenicity in experimental animals (group 3A). Moreover, the data were in-sufficient to propose a short-term MAC (STMAC) value for cobalt. However, it has been suggested to adopt the value of admissible concentration in biological material (ACB) for Co concentration in urine, 15 μg/l urine (μg/g creatinine) and in blood, 1μg/l. The following standard denotations have been adopted: “I” – irritating substance; “A” – sensitizing substance; “Ft” – fetus toxic substance; and “Carcinogenic” – the category of carcinogenicity of compounds should be determined on the basis of the list of hazardous substances along with its classification and denotation, e.g., cobalt dich-loride – Carcinogenic, Cat. 2; R49; cobalt sulfate (VI) – Carcinogenic, Cat. 2; R49

    Similar works