Background: Long-term neurological health risks associated with oil spill cleanup exposures are largely unknown. We aimed to investigate risks of longer-term neurological conditions among U.S. Coast Guard (USCG) responders to the 2010 Deepwater Horizon (DWH) oil spill. Methods: We used data from active duty members of the DWH Oil Spill Coast Guard Cohort Study (N=45224). Self-reported oil spill exposures were ascertained from post-deployment surveys. Incident neurological outcomes were classified using International Classification of Diseases, 9th Revision, codes from military health encounter records up to 5.5 years post-DWH. We used Cox Proportional Hazards regression to calculate adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for various incident neurological diagnoses (2010–2015). Oil spill responder (n=5964) vs. non-responder (n= 39260) comparisons were adjusted for age, sex, and race, while within-responder comparisons were additionally adjusted for smoking. Results: Compared to those not responding to the spill, spill responders had reduced risks for headache (aHR=0.84, 95% CI: 0.74-0.96), syncope and collapse (aHR=0.74, 95% CI: 0.56-0.97), and disturbance of skin sensation (aHR=0.81, 95% CI: 0.68-0.96). Responders reporting ever (n=1068) vs. never (n=2424) crude oil inhalation exposure were at increased risk for several individual and grouped outcomes related to headaches and migraines (aHR range: 1.39-1.83). Crude oil inhalation exposure was also associated with elevated risks for an inflammatory nerve condition, mononeuritis of upper limb and mononeuritis multiplex (aHR=1.71, 95% CI: 1.04-2.83), and tinnitus (aHR=1.91, 95% CI: 1.23-2.96), a condition defined by ringing in one or both ears. Risk estimates for those neurological conditions were higher in magnitude among responders reporting exposure to both crude oil and oil dispersants than among those reporting crude oil only. Conclusion: In this large study of active duty USCG responders to the DWH disaster, self-reported spill cleanup exposures were associated with elevated risks for longer-term neurological conditions