Probabilistic data-driven methods for forecasting, identification and control

Abstract

This dissertation presents contributions mainly in three different fields: system identification, probabilistic forecasting and stochastic control. Thanks to the concept of dissimilarity and by defining an appropriate dissimilarity function, it is shown that a family of predictors can be obtained. First, a predictor to compute nominal forecastings of a time-series or a dynamical system is presented. The effectiveness of the predictor is shown by means of a numerical example, where daily predictions of a stock index are computed. The obtained results turn out to be better than those obtained with popular machine learning techniques like Neural Networks. Similarly, the aforementioned dissimilarity function can be used to compute conditioned probability distributions. By means of the obtained distributions, interval predictions can be made by using the concept of quantiles. However, in order to do that, it is necessary to integrate the distribution for all the possible values of the output. As this numerical integration process is computationally expensive, an alternate method bypassing the computation of the probability distribution is also proposed. Not only is computationally cheaper but it also allows to compute prediction regions, which are the multivariate version of the interval predictions. Both methods present better results than other baseline approaches in a set of examples, including a stock forecasting example and the prediction of the Lorenz attractor. Furthermore, new methods to obtain models of nonlinear systems by means of input-output data are proposed. Two different model approaches are presented: a local data approach and a kernel-based approach. A kalman filter can be added to improve the quality of the predictions. It is shown that the forecasting performance of the proposed models is better than other machine learning methods in several examples, such as the forecasting of the sunspot number and the R¨ossler attractor. Also, as these models are suitable for Model Predictive Control (MPC), new MPC formulations are proposed. Thanks to the distinctive features of the proposed models, the nonlinear MPC problem can be posed as a simple quadratic programming problem. Finally, by means of a simulation example and a real experiment, it is shown that the controller performs adequately. On the other hand, in the field of stochastic control, several methods to bound the constraint violation rate of any controller under the presence of bounded or unbounded disturbances are presented. These can be used, for example, to tune some hyperparameters of the controller. Some simulation examples are proposed in order to show the functioning of the algorithms. One of these examples considers the management of a data center. Here, an energy-efficient MPC-inspired policy is developed in order to reduce the electricity consumption while keeping the quality of service at acceptable levels

    Similar works