Contribution of the microvessel network to the clonal and kinetic profiles of adrenal cortical proliferative lesions

Abstract

Monoclonal adrenocortical lesions have been characterized by an inverse correlation between proliferation and apoptosis, and polyclonal lesions show a direct correlation. Their relationship with the vascular pattern remains unknown in adrenocortical nodular hyperplasias (ACNHs), adenomas (ACAs), and carcinomas (ACCs). We studied 20 ACNHs, 25 ACAs, and 10 ACCs (World Health Organization classification criteria) from 55 women. The analysis included X-chromosome inactivation assay (on microdissected samples), slide and flow cytometry, and in situ end labeling. Endothelial cells were stained with anti-CD31, and the blood vessel area and density were quantified by image analysis in the same areas. Appropriate tissue controls were run in every case. Regression analyses between kinetic and vascular features were performed in both polyclonal and monoclonal lesions. Polyclonal patterns were observed in 14 of 18 informative ACNHs and 3 of 22 informative ACAs, and monoclonal patterns were seen in 4 of 18 ACNHs, 19 of 22 ACAs, and 9 of 9 ACCs. A progressive increase in microvessel area was observed in the ACNH–ACA–ACC transition but was statistically significant between benign and malignant lesions only (191.36 ± 168.32 v 958.07 ± 1279.86 μm2; P 186 μm2 (P =.0000008). Monoclonal lesions showed parallel trends (but with opposite signs) for microvessel area and density in comparison with proliferation and apoptosis, whereas polyclonal lesions showed inverse trends. In conclusion, the kinetic advantage of monoclonal adrenal cortical lesions (increased proliferation, decreased apoptosis) is maintained by parallel increases in microvessel area and density. HUM PATHOL 32:1232-1239. Copyright © 2001 by W.B. Saunders Compan

    Similar works