Prototyping and Evaluation of Sensor Data Integration in Cloud Platforms

Abstract

The SFI Smart Ocean centre has initiated a long-running project which consists of developing a wireless and autonomous marine observation system for monitoring of underwater environments and structures. The increasing popularity of integrating the Internet of Things (IoT) with Cloud Computing has led to promising infrastructures that could realize Smart Ocean's goals. The project will utilize underwater wireless sensor networks (UWSNs) for collecting data in the marine environments and develop a cloud-based platform for retrieving, processing, and storing all the sensor data. Currently, the project is in its early stages and the collaborating partners are researching approaches and technologies that can potentially be utilized. This thesis contributes to the centre's ongoing research, focusing on the aspect of how sensor data can be integrated into three different cloud platforms: Microsoft Azure, Amazon Web Services, and the Google Cloud Platform. The goals were to develop prototypes that could successfully send data to the chosen cloud platforms and evaluate their applicability in context of the Smart Ocean project. In order to determine the most suitable option, each platform was evaluated based on set of defined criteria, focusing on their sensor data integration capabilities. The thesis has also investigated the cloud platforms' supported protocol bindings, as well as several candidate technologies for metadata standards and compared them in surveys. Our evaluation results shows that all three cloud platforms handle sensor data integration in very similar ways, offering a set of cloud services relevant for creating diverse IoT solutions. However, the Google Cloud Platform ranks at the bottom due to the lack of IoT focus on their platform, with less service options, features, and capabilities compared to the other two. Both Microsoft Azure and Amazon Web Services rank very close to each other, as they provide many of the same sensor data integration capabilities, making them the most applicable options.Masteroppgave i Programutvikling samarbeid med HVLPROG399MAMN-PRO

    Similar works