Abstract

Flexible metal–organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch through a breathing mechanism requiring structural contortions. Here we show a clathrate (non-porous) coordination network that undergoes gas-induced switching between multiple non-porous phases through transient porosity, which involves the difusion of guests between discrete voids through intra-network distortions. This material is synthesized as a clathrate phase with solvent-flled cavities; evacuation afords a single-crystal to single-crystal transformation to a phase with smaller cavities. At 298 K, carbon dioxide, acetylene, ethylene and ethane induce reversible switching between guest-free and gas-loaded clathrate phases. For carbon dioxide and acetylene at cryogenic temperatures, phases showing progressively higher loadings were observed and characterized using in situ X-ray difraction, and the mechanism of diffusion was computationally elucidated.</p

    Similar works