Rapid Thermal Processing and its Effects on High Aspect Ratio Silicon Features

Abstract

Silicon (Si) is the most widely used material in semiconductor devices fabrication, and silicon wafers undergo many steps before achieving the final product, including heat treatments. A rapid thermal processor, with a base pressure of 10-6 mbar, is the case study of this work, and it’s proposed as an alternative to more conventional furnace methods. Moreover, the main goal was to investigate the impact rapid thermal processing (RTP) has on different high aspect ratio (HAR) structures etched into Si substrates. The ‘clear – oxidize – remove – etch’ (CORE) process was used as the primary etching process, resorting to a deep reactive ion etching (DRIE) tool. The structural characterization was mainly carried out by scanning electron microscopy, although ellipsometry has also been used. RTP refers to any process that implies elevating the temperature of a given material, mainly semiconductors, to high values during short periods (minutes or even less). As such, it can be used as a multi-functional and versatile microfabrication tool, capable of performing rapid thermal oxidation, hydrogenation, annealing and nitridation, among others. The project focused on the first three, which led to several experimental studies. According to the results, the atom migration phenomenon was witnessed in both 5% hydrogen/argon-ambient and argon-ambient rapid thermal annealing (RTA). Thus, it resulted in either three-dimensional (3D) profile transformation or silicon-on-nothing (SON) structures due to empty-space-in-silicon (ESS) formation. However, silicon volume loss was reported, possibly caused by sublimation and etching by reaction with oxygen (O2). Furthermore, the tool was able to grow uniform silicon oxide (SiO2) thin films –below 17 nm and 20 nm for Si (100) and Si (110) surfaces, respectively. The removal of previously grown black silicon (BSi) was also accomplished by RTA, with some margin for improvement. In general, a better understanding of these techniques will allow for their insertion, for instance, into the metal-oxide-semiconductor (MOS) and micro-electromechanical systems (MEMS) devices manufacturing process and the large scale integrated circuits world.Mundialmente, o silício (Si) é dos materiais mais utilizados na indústria de dispositivos semicondutores, sendo que um substrato pode ser submetido a vários processos até ser atingido um produto final, incluindo tratamentos térmicos. Neste trabalho, um processador térmico de rápido aquecimento - pressão base de 10-6 mbar - é estudado e proposto como alternativa à utilização de fornos convencionais. Assim, o principal objetivo é investigar o impacte que processamentos térmicos de curta duração (RTP) podem ter em estruturas com elevada razão de forma, fabricadas em substratos de silício. Com esse propósito, a sequência “clear – oxidize – remove – etch” (CORE) foi utilizada como principal processo de erosão, utilizando um equipamento dedicado a erosão reativa iónica em profundidade. Para a caracterização recorreu-se maioritariamente a microscopia eletrónica de varrimento, embora também se tenha recorrido a elipsometria. RTP refere-se a processos que impliquem aumentar a temperatura de um dado material, normalmente semicondutores, até valores elevados, num curto espaço de tempo (minutos ou mesmo segundos). Deste modo, pode ser utilizado como uma ferramenta multifuncional e bastante versátil, capaz de efetuar oxidação térmica, hidrogenação, recozimento, nitrogenação, entre outros. Neste projeto, focaram-se os primeiros três, conduzindo a vários estudos experimentais. De acordo com os resultados, o fenómeno de difusão atómica do silício, pela sua superfície, em estado sólido, foi presenciado, quer utilizando 5% hidrogénio/árgon ou apenas árgon como ambiente para recozimento térmico de curta duração (RTA). Assim, foi presenciada a transformação tridimensional (3D) das estruturas em silício ou a formação de espaços vazios no interior do Si (ESS). Contudo, foi reportada perda de volume de silício, possivelmente causado por sublimação e erosão por reação com oxigénio. Adicionalmente, foi possível obter filmes finos uniformes de óxido de silício – abaixo de 17 nm e 20 nm em superfícies Si (100) e Si (110), respetivamente. A remoção de black silicon (BSi) foi também conseguida através de RTA. De uma forma geral, aprofundar o conhecimento sobre estas técnicas permitirá a sua inserção, por exemplo, no processo de fabricação de dispositivos MOS e MEMS e no mundo de circuitos integrados à grande escala

    Similar works