Effect of high salinity on cell growth and protein production of Antarctic ice microalgae Chlamydomonas sp. ICE-L

Abstract

Antarctic ice microalgae Chlamydomonas sp. ICE-L can survive and thrive in Antarctic sea ice. In this study, Chlamydomonas sp. ICE-L could survive at the salinity of 132% NaCl. SDS-PAGE showed that the density of 2 bands (26 and 36 kD) decreased obviously at the salinity of 99% NaCl compared to at the salinity of 33% NaCl. The soluble proteins in Chlamydomonas sp. ICE-L grown under salinity of 33% and 99% NaCl were compared by 2-D gel electro-phoresis. After shocking with high salinity, 8 protein spots were found to disappear, and the density of 28 protein spots decreased. In addition, 19 protein spots were enhanced or induced, including one new peptide(51kD).The changes of proteins might be correlated with the resistance for Chlamydomonas sp. ICE-L to high salinity

    Similar works