Abstract

Laser cavity-solitons can appear in a microresonator-filtered laser when judiciously balancing the slow nonlinearities of the system. Under certain conditions, such optical states can be made to self-emerge and recover spontaneously, and the understanding of their robustness is critical for practical applications. Here, we study the formation of a bonded state comprising a soliton and a blue-detuned continuous wave, whose coexistence is mediated by dispersion in the nonlinear refractive index. Our real-time dispersive Fourier transform measurements, supported by comprehensive theoretical analysis, reveal the presence of an elastic bonding between the two states, resulting in an enhancement of the soliton’s robustness.</p

    Similar works