Scientists' bounded mobility on the epistemic landscape

Abstract

Despite persistent efforts in revealing the temporal patterns in scientific careers, little attention has been paid to the spatial patterns of scientific activities in the knowledge space. Here, drawing on millions of papers in six disciplines, we consider scientists' publication sequence as "walks" on the quantifiable epistemic landscape constructed from large-scale bibliometric corpora by combining embedding and manifold learning algorithms, aiming to reveal the individual research topic dynamics and association between research radius with academic performance, along their careers. Intuitively, the visualization shows the localized and bounded nature of mobile trajectories. We further find that the distributions of scientists' transition radius and transition pace are both left-skewed compared with the results of controlled experiments. Then, we observe the mixed exploration and exploitation pattern and the corresponding strategic trade-off in the research transition, where scientists both deepen their previous research with frequency bias and explore new research with knowledge proximity bias. We further develop a bounded exploration-exploitation (BEE) model to reproduce the observed patterns. Moreover, the association between scientists' research radius and academic performance shows that extensive exploration will not lead to a sustained increase in academic output but a decrease in impact. In addition, we also note that disruptive findings are more derived from an extensive transition, whereas there is a saturation in this association. Our study contributes to the comprehension of the mobility patterns of scientists in the knowledge space, thereby providing significant implications for the development of scientific policy-making.Comment: article paper, 47 pages, 29 figures, 4 table

    Similar works

    Full text

    thumbnail-image

    Available Versions