While the design of blind image quality assessment (IQA) algorithms has
improved significantly, the distribution shift between the training and testing
scenarios often leads to a poor performance of these methods at inference time.
This motivates the study of test time adaptation (TTA) techniques to improve
their performance at inference time. Existing auxiliary tasks and loss
functions used for TTA may not be relevant for quality-aware adaptation of the
pre-trained model. In this work, we introduce two novel quality-relevant
auxiliary tasks at the batch and sample levels to enable TTA for blind IQA. In
particular, we introduce a group contrastive loss at the batch level and a
relative rank loss at the sample level to make the model quality aware and
adapt to the target data. Our experiments reveal that even using a small batch
of images from the test distribution helps achieve significant improvement in
performance by updating the batch normalization statistics of the source model.Comment: Accepted to ICCV 202