On the arithmetic quasi depth

Abstract

Let h:Zβ†’Zβ‰₯0h:\mathbb Z \to \mathbb Z_{\geq 0} be a nonzero function with h(k)=0h(k)=0 for kβ‰ͺ0k\ll 0. We define the quasi depth of hh by qdepth(h)=max⁑{dβ€…β€Š:β€…β€Šβˆ‘j≀k(βˆ’1)kβˆ’j(dβˆ’jkβˆ’j)h(j)β‰₯0Β forΒ allΒ k≀d}qdepth(h)=\max\{d\;:\; \sum_{j\leq k} (-1)^{k-j}\binom{d-j}{k-j}h(j)\geq 0\text{ for all }k\leq d\}. We show that qdepth(h)qdepth(h) is a natural generalization for the quasi depth of a subposet PβŠ‚2[n]P\subset 2^{[n]} and we prove some basic properties of it. Given h(j)=ajp+bh(j)=aj^p+b, jβ‰₯0j\geq 0, with a,b,na,b,n positive integers, we compute qdepth(h)qdepth(h) for n=1,2n=1,2 and we give sharp bounds for qdepth(h)qdepth(h) for pβ‰₯3p\geq 3. Also, for h(j)=anjn+β‹―+a1j+a0h(j)=a_nj^n+\cdots+a_1j+a_0, jβ‰₯0j\geq 0, with aiβ‰₯0a_i\geq 0, we prove that qdepth(h)≀2n+1qdepth(h)\leq 2^{n+1}.Comment: 18 page

    Similar works

    Full text

    thumbnail-image

    Available Versions