Recent advancements in audio generation have been spurred by the evolution of
large-scale deep learning models and expansive datasets. However, the task of
video-to-audio (V2A) generation continues to be a challenge, principally
because of the intricate relationship between the high-dimensional visual and
auditory data, and the challenges associated with temporal synchronization. In
this study, we introduce FoleyGen, an open-domain V2A generation system built
on a language modeling paradigm. FoleyGen leverages an off-the-shelf neural
audio codec for bidirectional conversion between waveforms and discrete tokens.
The generation of audio tokens is facilitated by a single Transformer model,
which is conditioned on visual features extracted from a visual encoder. A
prevalent problem in V2A generation is the misalignment of generated audio with
the visible actions in the video. To address this, we explore three novel
visual attention mechanisms. We further undertake an exhaustive evaluation of
multiple visual encoders, each pretrained on either single-modal or multi-modal
tasks. The experimental results on VGGSound dataset show that our proposed
FoleyGen outperforms previous systems across all objective metrics and human
evaluations