Learned 1-D passive scalar advection to accelerate chemical transport modeling: a case study with GEOS-FP horizontal wind fields

Abstract

We developed and applied a machine-learned discretization for one-dimensional (1-D) horizontal passive scalar advection, which is an operator component common to all chemical transport models (CTMs). Our learned advection scheme resembles a second-order accuracy, three-stencil numerical solver, but differs from a traditional solver in that coefficients for each equation term are output by a neural network rather than being theoretically-derived constants. We downsampled higher-resolution simulation results -- resulting in up to 16×\times larger grid size and 64×\times larger timestep -- and trained our neural network-based scheme to match the downsampled integration data. In this way, we created an operator that is low-resolution (in time or space) but can reproduce the behavior of a high-resolution traditional solver. Our model shows high fidelity in reproducing its training dataset (a single 10-day 1-D simulation) and is similarly accurate in simulations with unseen initial conditions, wind fields, and grid spacing. In many cases, our learned solver is more accurate than a low-resolution version of the reference solver, but the low-resolution reference solver achieves greater computational speedup (500×\times acceleration) over the high-resolution simulation than the learned solver is able to (18×\times acceleration). Surprisingly, our learned 1-D scheme -- when combined with a splitting technique -- can be used to predict 2-D advection, and is in some cases more stable and accurate than the low-resolution reference solver in 2-D. Overall, our results suggest that learned advection operators may offer a higher-accuracy method for accelerating CTM simulations as compared to simply running a traditional integrator at low resolution

    Similar works

    Full text

    thumbnail-image

    Available Versions