Magnetic anisotropy driven by ligand in 4d transition metal oxide SrRuO3

Abstract

The origin of magnetic anisotropy in magnetic compounds is a longstanding issue in solid state physics and nonmagnetic ligand ions are considered to contribute little to magnetic anisotropy. Here, we introduce the concept of ligand driven magnetic anisotropy in a complex transition-metal oxide. We conducted X ray absorption and X ray magnetic circular dichroism spectroscopies at the Ru and O edges in the 4d ferromagnetic metal SrRuO3. Systematic variation of the sample thickness in the range below 10 nm allowed us to control the localization of Ru 4d t2g states, which affects the magnetic coupling between the Ru and O ions. We found that the orbital magnetization of the ligand induced via hybridization with the Ru 4d orbital determines the magnetic anisotropy in SrRuO3

    Similar works

    Full text

    thumbnail-image

    Available Versions