In recent years, precision agriculture has gradually oriented farming closer
to automation processes to support all the activities related to field
management. Service robotics plays a predominant role in this evolution by
deploying autonomous agents that can navigate fields while performing tasks
without human intervention, such as monitoring, spraying, and harvesting. To
execute these precise actions, mobile robots need a real-time perception system
that understands their surroundings and identifies their targets in the wild.
Generalizing to new crops and environmental conditions is critical for
practical applications, as labeled samples are rarely available. In this paper,
we investigate the problem of crop segmentation and propose a novel approach to
enhance domain generalization using knowledge distillation. In the proposed
framework, we transfer knowledge from an ensemble of models individually
trained on source domains to a student model that can adapt to unseen target
domains. To evaluate the proposed method, we present a synthetic multi-domain
dataset for crop segmentation containing plants of variegate shapes and
covering different terrain styles, weather conditions, and light scenarios for
more than 50,000 samples. We demonstrate significant improvements in
performance over state-of-the-art methods and superior sim-to-real
generalization. Our approach provides a promising solution for domain
generalization in crop segmentation and has the potential to enhance a wide
variety of precision agriculture applications