A COMPUTER SIMULATION STUDY OF IONIC CONDUCTIVITY IN POLYMER ELECTROLYTES

Abstract

simulation In this paper we present a computer simulation study of ionic conductivity in solid polymeric electrolytes. The multiphase nature of the material is taken into account. The polymer is represented by a regular lattice whose sites represent either crystalline or amorphous regions with the charge carrier performing a random walk. Different waiting times are assigned to sites corresponding to the different phases. A random walk (RW) is used to calculate the conductivity through the Nernst-Einstein relation. Our walk algorithm takes into account the reorganisation of the different phases over time scales comparable to time scales for the conduction process. This is a characteristic feature of the polymer network. The qualitative nature of the variation of conductivity with salt concentration agrees with the experimental values for PEO-NH4I and PEO-NH4SCN. The average jump distance estimated from our work is consistent with the reported bond lengths for such polymers.

    Similar works