Design and development of soft x-ray diagnostics based on GEM detectors at IPPLM

Abstract

The search for new technologies in the field of plasma diagnostics entails the increasing demands on the radiative stability of the used materials due to development and usage of fusion facilities, where the study of processes occurring during the interaction of radiation with matter has become particularly important. Currently, a new X-ray imaging detection technology is required for tokamaks such as ITER. X-ray detectors that are being used in existing equipment may rapidly degrade due to large neutron fluxes characteristic for the tokamak environment. Despite the relatively wide use of semiconductor detectors to record SXR radiation (generally ionizing radiation), gas detectors are promising candidates that are suited much better for use in future fusion reactors given their resistance to neutron radiation. The most promising representative of the new gas detector class is the so called Gas Electron Multiplier (GEM), which is characterized by high amplification factor of the primary charge that is originated from photon absorption. Its main advantages are the compactness of the detector, good temporal and spatial resolutions, the ability to discriminate against photon energy and better neutron resistance compared to existing systems. All this makes such a detection system a potentially better candidate for soft X-ray measurements in the ITER and DEMO reactors. In this work, a new type of detection system based on GEM technology was proposed for soft X-ray measurements in the ITER reactor-oriented research, which is being developed at IPPLM

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021