SMA-driven soft robotic neck: design, control and validation

Abstract

Replicating the behavior and movement of living organisms to develop robots which are better adapted to the human natural environment is a major area of interest today. Soft device development is one of the most promising and innovative technological fields to meet this challenge. However, soft technology lacks of suitable actuators, and therefore, development and integration of soft actuators is a priority. This article presents the development and control of a soft robotic neck which is actuated by a flexible Shape Memory Alloy (SMA)-based actuator. The proposed neck has two degrees of freedom that allow movements of inclination and orientation, thus approaching the actual movement of the human neck. The platform we have developed may be considered a real soft robotic device since, due to its flexible SMA-based actuator, it has much fewer rigid parts compared to similar platforms. Weight and motion noise have also been considerably reduced due to the lack of gear boxes, housing and bearings, which are commonly used in conventional actuators to reduce velocity and increase torque.This work was supported in part by the Spanish Ministry of Economy and Competitiveness through the Exoesqueleto para Diagnostico y Asistencia en Tareas de Manipulación Spanish Research Project under Grant DPI2016-75346-R and the HUMASOFT Project under Grant DPI2016-75330-P, in part by the Programas de Actividades I+D en la Comunidad de Madrid through the RoboCity2030-DIH-CM Madrid Robotics Digital Innovation Hub (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, fase IV) under Grant S2018/NMT-4331, and in part by the Structural Funds of the EU

    Similar works