Multi-Criteria Ground Segment Dimensioning for Non-Geostationary Satellite Constellations

Abstract

Non-Geostationary Orbit (NGSO) satellite constellations are becoming increasingly popular as an alternative to terrestrial networks to deliver ubiquitous broadband services. With satellites travelling at high speeds in low altitudes, a more complex ground segment composed of multiple ground stations is required. Determining the appropriate number and geographical location of such ground stations is a challenging problem. In this paper, we propose a ground segment dimensioning technique that takes into account multiple factors such as rain attenuation, elevation angle, visibility, and geographical constraints as well as user traffic demands. In particular, we propose a methodology to merge all constraints into a single map-grid, which is later used to determine both the number and the location of the ground stations. We present a detailed analysis for a particular constellation combining multiple criteria whose results can serve as benchmarks for future optimization algorithms

    Similar works