Engineering patterned and dynamic surfaces for the spatio-temporal control of cell behaviour

Abstract

Stem cell shape and mechanical properties in vitro can be directed by geometrically defined micropatterned adhesion substrates. However conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the natural cell microenvironment. Recent advancements in microfabrication technologies in combination with the use of light-responsive materials, allow to manipulate the shape of living cells in real-time in a non-invasive Spatio-temporal controlled way to introduce additional geometrically defined adhesion sites and to study relative cell behaviour. Here, the confocal laser technique is exploited for dynamically evaluate the variation over time of the tensional and morphological cell state. This method allows the precise control of specific actin structures that regulate cell architecture. Actin filament bundles, initially randomly organized in circular-shaped cells, are induced to align and distribute to form a rectangular-shaped cell in response to specific dynamic changes in the cell adhesion pattern. The changes in morphology also reflect dramatic changes in FAs distribution, cell mechanics, nuclear morphology, and chromatin conformation. The reported strategy is convenient to explore the cell-substrate interface and the mechanisms through which cell geometry regulates cell signalling in a facile and cost-effective manner and it open new routes to understand how the field of dynamic platforms should potentially contribute to unveil complex biological events such as the modulation of cell shape

    Similar works