Prediction Of Lateral Vibration Behavior Of Integrally Geared Centrifugal Compressor During Synchronous Motor Startup By Transient Torsional-Lateral Coupled Analysis

Abstract

LectureStartup transients of both torsional and lateral vibration behaviors of an integrally geared centrifugal compressor driven by a synchronous motor are examined by transient torsional-lateral coupled analyses, and the numerical calculation results are evaluated using the field measurements as a benchmark. Since linear bearing coefficients are employed in the numerical simulation instead of more sophisticated nonlinear bearing model, bilinear stiffness is additionally considered to reflect the effects of the rotor confinement within the bearing clearance. Moreover, temporary teeth separation of the gear meshing and engagement at the backside during torque reversal is also considered in the numerical calculation. The transient lateral vibration behavior of the pinion rotor during the synchronous motor’s startup is successfully replicated. Both (a) bilinear stiffness of the pinion rotor bearings due to rotor restraint within the bearing clearance, and (b) effect of temporary teeth separation within the backlash and engagement at the backside because of torque reversal, are found to strongly influence the numerical predictions

    Similar works