Progression of group-III sesquioxides: epitaxy, solubility and desorption

Abstract

In recent years, ultra-wide bandgap semiconductors have increasingly moved into scientific focus due to their outstanding material properties, making them promising candidates for future applications within high-power electronics or solar-blind photo detectors. The group-III-sesquioxides can appear in various polymorphs, which influences, for instance, the energy of the optical bandgap. In gallium oxide, the optical bandgap ranges between 4.6 and 5.3 eV depending on the polymorph. For each polymorph it can be increased or decreased by alloying with aluminum oxide (8.8 eV) or indium oxide (2.7–3.75 eV), respectively, enabling bandgap engineering and thus leading to an extended application field. For this purpose, an overview of miscibility limits, the variation of bandgap and lattice constants as a function of the alloy composition are reviewed for the rhombohedral, monoclinic, orthorhombic and cubic polymorph. Further, the effect of formation and desorption of volatile suboxides on growth rates is described with respect to chemical trends of the discussed ternary materials

    Similar works